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The computation of magnetic fields in presence of magnetic materials calls for methods able to cope with the complex interactions 

between the material characteristics and the field, yet guaranteeing satisfactory computational promptness and accuracy. The 

availability of new analytical formulas to compute fields from equivalent magnetic charges in the magneto-quasi-static limit allowed to 

set up a method providing accurate field representation with coarse discretization, but the assembly times of matrices from those complex 

formulas and their dense nature constitute a limit of the method. In this paper, High Performance Computing (HPC) approaches are 

proposed to speed up assembly, and multipole-based methods are proposed to simplify matrix structure. 

 

Index Terms—Magnetic materials, Semi-Analytical methods, Multipole expansion, GPU’s.  

 

I. INTRODUCTION 

HE USE of magnetic materials in engineering applications 

drove the development of numerical methods capable of 

achieving satisfactory accuracy within reasonable 

computational times. Finite Elements Method (FEM) offers a 

relative ease of implementation and a simple structure of the 

involved matrices, but the discretization of all volumes, 

including air, is required. Alternative formulations as Boundary 

Elements Method (BEM) can exempt from air meshing, at the 

expense of obtaining dense matrix. A different class of methods 

models the magnetic materials as a set of “additional” 

equivalent sources contributing to the magnetic field. The 

magnetic parts are discretized into elementary sources, and their 

magnitude is obtained by suitably imposing the constitutive 

equations [1], [2]. Even using simple bases to discretize the 

sources (e.g. uniform magnetization over hexahedral small 

elements), the method suffers from complex formulas for the 

computation of the field, and the assembly results in full 

matrices. These drawbacks are common to a number of 

numerical methods [3]. Many solutions were suggested either 

to speed up the assembly process (including massive use of 

High Performance Computing, HPC) and to ease the field 

computation taking benefit from the different weight of 

interactions between neighboring sources and field points with 

respect to far interactions (e.g. multipole expansions, 

hierarchical matrices). The common strategy beneath these 

acceleration methods is splitting the contributions from each 

equivalent source into near and far field interactions, in such a 

way to guarantee a uniform accuracy. The elements of “near 

field” blocks need considerable computational effort; in these 

cases, using parallel procedures running in HPC environments 

is very useful to reduce the filling time. The “far field” blocks, 

on the other hand, can be approximated using multipole 

expansions (e.g. [3]), or using a QR matrix decomposition (e.g. 

[4]). This paper, in the framework of equivalent sources 

approaches, presents a method to combine HPC computation of 

near field interactions and simplified computations of far field 

elements. This short version reports just a comparison of 

assembly times using standard sequential coding and HPC 

implementation for near field blocks. The full paper will 

introduce the far field approximation approach and will assess 

the method performance on a complex geometry example from 

thermonuclear fusion reactors.  

II. OVERVIEW OF THE METHOD 

Let’s consider the structure in Fig. 1, where a magnetically 

permeable cube is immersed in the field generated by a circular 

coil. Simple geometry, steady state currents and current drive 

assumptions allow easing exposition, but such hypotheses can 

be easily removed. 

 
Fig. 1 – Example of geometry 

 

The cube is discretized using a hexahedral mesh, and the ef-

fect of the magnetic material is described using the magnetiza-

tion density M, here assumed uniform inside each element. This 

allows using closed form expressions for the magnetic field H 

produced by a “uniformly magnetized brick”, once its magnet-

ization is known [5]: 

𝐇b(𝐱d) = −
1

4π
∑ (𝐌 × n̂f) × ∇Wf(𝐱d)

Sf∈∂Vb

 (1) 

with Wf(r): 

Wf(𝐱) = ∑ n̂f × (𝐱𝑒𝑗
− 𝐱) ∙ t̂j

ej∈∂Sf

wj(𝐱)

− [(𝐱f − 𝐱) ∙ n̂f]Ωf(𝐱) 

(2) 

where ej is one of the edges on a face Sf belonging to boundary 

∂Vb of the brick volume Vb;  𝐱ej
 and xf are the position vectors 

of any two points along ej and on Sf respectively (any point be-

ing equivalent due to cross and dot-product); �̂�𝑗 is the tangent 

vector of ej; �̂�𝑓 the normal vector of Sf; f is the solid angle 

subtending face Sf from the origin, and, finally, wj is:  

wj(𝐱) = ln
|𝐱 − 𝐱𝐞| + |𝐱 − 𝐱𝒔| + |𝐱𝐞 − 𝐱𝐬|

|𝐱 − 𝐱𝐞| + |𝐱 − 𝐱𝐬| − |𝐱𝐞 − 𝐱𝐬|
 (3) 

T 



where xs and xe are starting and ending tips of the edge.  

To compute the direction and the amplitude of M, it is nec-

essary to evaluate not only the field due to the source coil, but 

also the contribution due to all the iron sources inside the mesh 

hexahedra. The assembly process consists then in creating the 

matrix H providing the field inside the k-th brick generated by 

an elementary magnetization in the b-th brick. The matrix can 

be assembled component-wise, and then it will have a number 

of columns equal to three times the number of bricks. The num-

ber of rows depends on the method used to determine the actual 

magnetization. If using a one-point collocation method (used 

here for the sake of exposition, although this approach drives to 

oscillations in the M distribution), and assembling again ele-

ment-wise, a square matrix H is obtained. Similar considera-

tions, limitedly to the number of rows, apply for the matrix G 

providing the magnetic field in the k-th brick generated by a 

unit current in the source coil. As concerning the determination 

of the actual value of M inside each brick, we enforce the con-

stitutive relationship M=f (H) in each brick using an under re-

laxed Picard approach, similar to what described in [6] and al-

ready used in [1]; in such a way the (i+1)-th estimate of M is: 

𝐇i+1(𝐱b) = 𝐇src(𝐱b) + H 𝐌b
i +G I𝑐 

𝐌b
∗ =  f (𝐇k+1(𝐱b)) b=1,.., Nb 

𝐌b
i+1 = (1 − βb

i )𝐌b
i + βb

i 𝐌b
∗  

(4) 

where xb are the central points of bricks and f is the constitutive 

relationship in the magnetic material relating H and M (verified 

in the center of bricks only with a collocation method). The re-

laxation factor 𝛽𝑏
𝑖  is adaptively adjusted in each brick and at 

each iteration of Picard procedure as 𝛽𝑏
𝑖 = 1/[1 − (1 − 𝜇𝑏

𝑖 )𝜆], 

where 𝜇𝑏
𝑖  is the estimate of relative permeability at i-th step in 

the b-th brick, and  is the smallest eigenvalue of H. Elements 

of H and G are computed using analytical expressions [5] in-

volving rather complex expressions, very expensive to be eval-

uated if using standard sequential coding on desktop-class com-

puter. 

III. HPC APPROACHES TO MATRIX ASSEMBLY 

Systems based on Graphic Processor Units (GPU) architec-

ture are getting an increasing success in HPC. Contrary to 

standard sequential Central Processor Units (known as “CPU”), 

designed to execute very different codes, GPU are optimized to 

execute just simple but highly parallel codes,. Due to this limi-

tation, the GPU achieve the best performance when all the cores 

execute the same tasks, and all the tasks are independent each 

from the others [6]. In the H assembly process, in order to pro-

vide the GPU homogeneous tasks, all the entries are grouped in 

near field and far field blocks during a preprocessing step. The 

full paper will present a different grouping, based on the M rep-

resentation inside blocks (e.g. uniform or linear).  Due to the 

particular structure of the GPU memory, in the preprocessing 

phase the geometrical information needed to calculate the inter-

actions is structured in a coalescent way, so that each core can 

access to a dedicated GPU memory containing each data (see 

[6] for more details). Since usually GPU inner memory is in the 

order of GigaBytes, and the typical matrix dimension does not 

fit this limitation, the final reduction step has to be done in the 

CPU. Details about GPU implementation and its advantages 

will be given in the full version. 

IV. ASSESSMENT OF GPU EVALUATION 

In order to show advantages of GPU computation for near-

field blocks, we have considered a 101030 cm 

parallelepiped, with constant permeability rel=1000. A 

decomposition in an increasing number of uniformly 

magnetized bricks is used, and all contributions are considered 

“near interactions”, thus computed using Eq. (1). In the full 

paper, indications about the optimal choice for the number of 

bricks will be given. The considered architecture comprises two 

Intel Xeon E52690 @2.90 GHz, equipped with a Nvidia Kepler 

K20 GPU (2496 cores, 6 GB of Global Memory). In order to 

ease understanding, a H multiplication times the M values 

array takes approximatively 10-1 s. A comparison of the 

assembly times using CPU version of the code and GPU coding 

is reported in Table I for increasing discretization levels.   

TABLE I – SPEED UPS FOR INCREASING NUMBER OF BRICKS 

N° of bricks  1040 2944 4992 6016 7040 

CPU Time [s] 4 34 97 140 191 

Speed up 12 34 39 40 41 

V.  CONCLUSIONS AND OUTLOOK 

The paper presents an approach to speed-up assembly of 

iteration matrices involved in equivalent magnetic sources 

methods. The method bases on the splitting of matrix into near 

and far field interaction blocks, and on the use of suited 

measures to speed up computation of each block. The full 

version will provide a complete description of the method, 

including the parentage with other source-based methods, the 

interplay with a global numerical strategy for the field 

computation in the magneto-quasi-static limit and the block-

structure of the matrices.  An application to real cases with 3D 

geometries will also be presented. 
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